THE OXYGEN COST OF A MINE ESCAPE

J.G. Kovac, Jr. (NIOSH) Dr. J.H. Kravitz (MSHA) T. R. Rehak (NIOSH) March, 1997

Background

- Joint MSHA/NIOSH Project
- Involving 99 mines in six states
- 700 miners
- Currently there are approximately 900 active underground coal mines in the United States employing approximately 50,000 miners
- Data was collected on the escape route as well as each participating miner

Objectives

- To gather in-mine data on escape times, distances and heart rates in order to predict how much oxygen is needed for a mine escape
- To compare oxygen consumption barefaced versus using an SCSR
- To provide a scientific basis for practical escape planning involving all major factors

Protocol

- Escape means taking a miner on foot and under oxygen from the deepest point of penetration in the mine to the surface
- Day 1- 5 miners make a mock escape barefaced while wearing a recording pulse-rate monitor
- Day 2 At least one miner escapes using an SCSR

Analysis

Histograms

- Age
- Weight
- Escape Distance
- Escape Time
- Speed
- Oxygen Uptake
- Oxygen Cost
- Oxygen used

Miner's Age

Miner's Weight

Escape Distance (All Mines)

Escape Time (w/ SCSR)

Speed (w/ SCSR)

Average VO 2 (w/ SCSR)

Oxygen Consumption Rate

- HR = Heart Rate (beats per minute)
- VO₂ = Rate of Oxygen consumption (liters of oxygen per minute)
- $HR = b + m * VO_2$
- $VO_2 = b_1 + m_1 * HR$
 - Straight line relationship
 - Intercepts (b & b₁) and slopes (m and m₁) are known
 - Oxygen consumed = Area under VO₂ vs. time curve
 - Oxygen consumed = Average VO₂ x Escape Time

Relationships from Research

- $HR = 36 \text{ VO}_2 + 66 \text{ (Penn State, 1977)}$
- HR = 39 VO₂ + 68 (Bureau of Mines, 1981)
- HR = $37 \text{ VO}_2 + 66 \text{ (Bureau of Mines, 1995)}$

O2 Cost (w/ SCSR)

O₂ Used (w/ SCSR)

Conclusions

- The study demonstrated that it is possible to project, on a mine-by-mine basis:
 - The difficulty of the mine escape
 - The amount of oxygen that would be required for a mine escape knowing the body weight and heart rates of the escaping miners
 - This would provide a practical way of optimizing the mine escape plan so that there would be enough SCSRs for miners to make the mine escape

Conclusions

- Escape speed 15% slower while using an SCSR
- Travel time 15% longer while wearing an SCSR
- Weight a miner consumes oxygen in proportion to his/her weight
- A practical, scientific approach for planning